Effect of fibroblast growth factor on the division and fusion of bovine myoblasts
نویسندگان
چکیده
The effect of fibroblast growth factor (FGF) on the rate of proliferation and fusion of bovine myoblast has been examined. Addition to the cultures of 0.1 mug-1 mug/ml of FGF stimulates the rate of proliferation and delays the fusion of primary cultures of bovine myoblasts cultured in 10% serum. Final cell densities reached in the presence of 0.1 mug/ml of FGF were fivefold higher than in controls; with 1 mug/ml, they were 10-fold higher. Increases in cell density were paralleled by increases in acetylcholine receptor sites as measured by the binding of 125I-alpha-bungarotoxin. Both fusion and the appearance of acetylcholine receptor sites were delayed in the presence of FGF. Growth hormone, insulin and testosterone, which have been reported to be mitogenic for rat and chick embryo myoblasts, did not have significant effects on DNA synthesis in bovine myoblasts when compared to the FGF. Conversely, FGF did not stimulate the proliferation of chick embryo myoblasts, indicating that it is not active in all vertebrate species.
منابع مشابه
The role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SSCs)
The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolatio...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملTransforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture
Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...
متن کاملFusion Competence of Myoblasts Rendered Genetically Null for N-Cadherin in Culture
Myoblast fusion is essential to muscle tissue development yet remains poorly understood. N-cadherin, like other cell surface adhesion molecules, has been implicated by others in muscle formation based on its pattern of expression and on inhibition of myoblast aggregation and fusion by antibodies or peptide mimics. Mice rendered homozygous null for N-cadherin revealed the general importance of t...
متن کاملA novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation.
Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 70 شماره
صفحات -
تاریخ انتشار 1976